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Fabrice Theoleyre, PhD. Student - Ing.
Dipl.-Inform. Peter Baumung

Tag der Anmeldung: 14. März 2005
Tag der Abgabe: 13. September 2005
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1. Introduction

Nowadays, wireless communication is already widespread, even in the private sector:
Mobile phone cellular networks nearly have the same importance as the ‘old’ wired
telephone networks. Computers also started to communicate over a wire. But
becoming smaller and smaller, they also became portable and at the latest, when
they reached the size of handhelds, they were truly mobile. But differently to cellular
phones, there was not immediately the need to connect such mobile devices to a
national or international network, but primarily, one wanted to connect to an office
or home LAN independently of available wires and independently of the location
within the office.

Thus, wireless LANs came up: Mobile devices were equipped with radio transceivers
and an access point was installed within the office that acted as a gateway towards
the wired office LAN. But this mode of wireless IP communication supported by
an infrastructure, although already widespread, is not the only one. Wireless LANs
may also be established spontaneously between two or more mobile devices. Such
mobile ad-hoc networks are self-organized and decentral without any central instance
managing the communication. Since no infrastructure has to be installed, such
networks are surely interesting for military purposes, but also for civil deployment
like in catastrophe management to support coordination of emergency teams or just
for private use like Instant Messaging, Voice over IP or even multiplayer games – all
without the need of any interconnection equipment that has to be installed.

But there is still recent research going on, because there is one crucial point: routing.
While multihop routing already exists when it comes to the interconnection of LANs
to WANs and to the Internet, routing over multiple radio hops is different. The
medium is much less reliable than in wired networks and the participating devices
are mobile and have different capacities. The topology underlies high dynamics,
thus, routes between nodes may change very often.

1.1 Objectives of this document

The objective of this work is the comparison of two routing protocols for mobile
ad-hoc networks that are using different approaches. One of these protocols is the
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Ad-hoc On-demand Distance Vector (AODV) routing protocol. AODV is already
accepted by the Internet Engineering Task Force (IETF) and provides a reactive
on-demand route construction, that is, the route between two nodes is build up
only when there is data to be sent by the user. The other protocol is the Virtual
Structure Routing (VSR) protocol. Its approach is based on a self-organization of the
network. Rather to consider a flat network like AODV, VSR deals with a structured
network. Furthermore, VSR combines both, proactive (i.e. routes are constructed
and maintained continuously) and reactive routing.

VSR was already compared with another protocol, that also uses a hybrid approach
like VSR: the Cluster Based Routing Protocol (CBRP, [ThVa05b]). As a current
work, a comparison between VSR and a purely proactive protocol, the Optimized
Link State Routing (OLSR) protocol, is made. Finally, this work compares VSR
with a purely reactive protocol: AODV.

The testing environment for comparing these representatives of the different genre of
routing protocols has to be the same. Thus, they were all implemented for the same
simulation environment starting from their original documentation (RFC, if possi-
ble). Furthermore, the implementations of mobility and traffic generation models
were reused for every protocol to achieve exactly the same surrounding conditions.

1.2 Structuring

At the beginning, a brief overview of wireless networks is given in chapter 2. It
explains some terms used within this document as well as some introductory words
concerning routing in mobile ad-hoc networks.

Chapter 3 gives an overview of the AODV protocol and then describes it more in
detail. Control packet formats and control structures used by AODV are given.
Furthermore, it describes how AODV constructs routes and how it keeps track of
existing routes that are used.

VSR is explained in chapter 4. It starts with the basic ideas upon which VSR’s
virtual structure is based. After this, the topology construction and maintenance
procedures are described. Finally, the routing upon this structure is explained.

The implementation of AODV in OPNET Modeler Version 8.1.A is described in
chapter 5. It also explains the implementation of the traffic and mobility models
used and documents the possible simulation parameters.

Chapter 6 shows the configuration parameters that were used for the simulation
series. After that, the results are discussed and explained.

Finally, this work concludes in chapter 7. Here, a short review of this work is given
and some possible future workings, that are based on this one, are pointed out.
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This chapter describes some basic knowledge needed for the understanding of up-
coming chapters. In section 2.1 a general introduction to wireless LANs is given,
including medium access. After that, in section 2.2, some mechanisms to find routes
between nodes in mobile ad-hoc networks are explained.

2.1 Mobile ad-hoc networks

Basically, wireless networks can be organized in two different ways: with an in-
frastructure and without an infrastructure. In the first case, there is a base station
present, the access point (AP), and all communication goes through it (figure 2.1(a)).
The access point often is connected to a wired LAN and may provide access to ser-
vices like printing and Internet in that way. Thus, this managed mode of operation
is essentially an extension of a wired network to easily provide flexible access to an
existing infrastructure via radio.

In operation without such an infrastructure, the nodes are communicating directly
with each other, in ad-hoc mode (figure 2.1(b)). When adding the ability to commu-
nicate via multiple intermediate nodes through multihop routing protocols (see sec-
tion 2.2), entire networks emerge. Within such mobile ad-hoc networks (MANETs),
communication is not limited to nodes that are within radio range of each other.
This allows nodes willing (or needing) to communicate with each other to estab-
lish a network anywhere without the need to install any interconnection equipment.
While this form of communication may be interesting for military units to exchange
strategy information during a maneuver, it also may have a wide civil deployment,
for example in civil protection on catastrophes, allowing emergency units to coor-
dinate, or in traffic management systems allowing a fast propagation of traffic jam
information from car to car.

2.1.1 Hybrid networks

A limitation of a managed wireless LAN is, that a node has to be within radio range
of the access point. However, when communicating in ad-hoc mode, a node may
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(a) Managed network (b) Ad-hoc network

Figure 2.1: Types of a wireless LANs

still reach its desired destination node even if it is far beyond radio range, as long
as there are enough intermediate nodes that forward the data.

Hybrid networks are actually a combination of mobile managed and ad-hoc networks
(figure 2.2). Mobile nodes are communicating like in ad-hoc mode. The access
point also behaves like such a node, except that it doesn’t move and that it has an
additional network interface. This interface is a standard Ethernet interface that is
connected to a wired network. Thus, the access point has a gateway functionality
between two IP networks.

For now, there is no standardization for hybrid networks yet. But they are becom-
ing more and more interesting also regarding terms like Mobile IP and Ubiquitous
Internet, since they allow access to a wired network for nodes that are not within
radio range of an access point.

Figure 2.2: Hybrid network

2.1.2 Medium access: IEEE 802.11

In radio communication, medium access techniques that are used for wired LANs
like CSMA/CD (carrier sense multiple access with collision detection, ‘listen before
and while talk’) are not suitable ([Tane03]): While all nodes on an Ethernet bus
are aware of ongoing communications, this is not the case for radio communication.
Consider figure 2.3: When A is transmitting to B and C senses the medium, it will
not hear A because it is out of radio range. Consequently, if C wants to transmit
to B, it starts transmitting, interferes at B and garbles the transmission of A. The
medium was free at the sender, but not at the receiver. A was too far away from C
to be detected by C, thus hidden. This problem is called the hidden station problem.
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Figure 2.3: Hidden station problem: A is hidden to C and vice versa

Another problem occurs if B transmits to A and C wants to transmit to D (figure
2.4). If C senses the medium, it will hear the ongoing communication of B and
therefore defer its transmission to D, although there wouldn’t be any interference at
the receiver. So C is exposed to B but B is far away enough to D. This problem is
called the exposed station problem.

Figure 2.4: Exposed station problem: C is exposed to B

The Institute of Electrical and Electronic Engineers (IEEE) defined a standard for
wireless LANs that comprises managed and ad-hoc modes and that is compatible
with existing networking protocols above the data link layer: the IEEE 802.11 stan-
dard ([Schi03]). This standard defines the physical layer (2.4GHz radio band) and
the data link layer (direct communication between mobile stations or with a base
station). Thus, in terms of 802.11, ‘ad-hoc’ means a direct communication between
stations that are within radio range. This is contrary to mobile ad-hoc networks
that also imply multihop communication (see introduction of section 2.1).

In ad-hoc mode, the CSMA/CA (CSMA with collision avoidance) protocol is used
for medium access control. In CSMA/CA, a node A that wants to transmit data to
node B first senses the medium in listening a certain time to it (DCF InterFrame
Spacing, DIFS). If it is occupied by another transmission, A waits a certain backoff
time and retries again. If it was not occupied during the time DIFS, A starts
its data transmission. B is supposed to send an acknowledgment upon successful
reception of the data frame. If A does not receive any acknowledgment within a
certain timeout, it assumes that its transmission collided with a transmission of
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another node. Colliding nodes wait a random time that is calculated using a binary
exponential backoff algorithm and then try again later.

This basic access to the medium is still vulnerable to the hidden station problem.
The RTS/CTS extension of CSMA/CA attempts to avoid collisions due to hidden
stations: When the medium finally becomes free, A sends a RTS (request to send)
frame to B to ask for permission to send it a data frame. If B receives such a RTS
and if it is free for data reception, it replies with a CTS (clear to send) frame. Both
frames are very short and contain the size of the data frame that is to be sent. If A
does not receive the expected CTS, it waits a random backoff time and then starts
a retry. If it receives the CTS successfully, it sends the data frame.

Hidden stations learn about attempted transmissions even if only one concerned
node, the sender or the receiver, is within radio range. If a third party node receives
a RTS, it estimates the duration of the upcoming transfer and marks the medium
busy for that time. Either does a node that receives a CTS. The waiting time can
be estimated using the size of the upcoming data frame that is transmitted within
the RTS and CTS frames. Thus, all nodes that are within the radio ranges of either
A or B are informed about the data transmission and will keep quiet during the
transfer.

2.2 Routing in MANETs

While routing protocols in wired networks are designed for fixed topologies with
fixed neighborhoods and only few changes, routing in MANETs is very different:
Nodes may disappear suddenly, reappear somewhere else, have unidirectional links
towards other nodes and move away from one neighbor towards a new neighbor while
keeping any third neighbors. Thus, routes in wired networks may be valid for a long
time while routes in MANETs may become invalid instantly after construction.

In MANETs there are two basic types of routing protocols that try to cope with the
high dynamics in two different ways:

• Reactive routing protocols

Reactive protocols do not maintain any persistent information about the net-
work in which they are participating. If there is no communication at all, the
route table of a node normally remains empty and a node does not know any
of its neighbors. In fact, only if a higher protocol layer wishes to send data
to a particular node, the routing protocol starts its work and enters a route
discovery process, thus it starts route construction on-demand. Usually, route
requests are broadcasted and flooded on the network until there is some route
reply. Unused routes are normally discarded from the route table after a short
period of time because they are not maintained actively and, thus, must not
be considered valid after a certain time due to the high dynamics of MANETs.
Examples for reactive routing protocols for MANETs that are currently being
standardized by the IETF are the Dynamic Source Routing (DSR) protocol
([JoMH04]) and the Ad-hoc On-Demand Distance Vector (AODV) protocol
(RFC 3561, see chapter 3).
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• Proactive routing protocols

With proactive protocols, nodes continuously exchange routing information
and a node usually has a valid route to each other node within the network.
The advantage is, that there is no latency due to route construction like with
reactive protocols. The tradeoff, however, is usually a constant base network
load due to route information exchange even if there is no user data to be sent.
This also results in a higher energy consumption. Examples for proactive rout-
ing protocols for MANETs that are currently being standardized by the IETF
is the Optimized Link State Routing (OLSR) protocol (RFC 3626, [CJLM+01])
and the Topology Dissemination Based on Reverse-Path Forwarding (TBRPF)
protocol (RFC 3684, [OgTL04]).

Reactive protocols usually have the advantage that the control flow related to rout-
ing is reduced. However, they have to pay with a relatively high latency for data
transmission when constructing a route on-demand. Proactive protocols allow data
to be sent almost always immediately, but they usually produce more control flow
and consume more energy and memory which can be critical to small low power de-
vices like PDAs. Some protocols combine reactive and proactive routing in order to
find a good compromise between control flow and route construction latency. They
are often hierarchical routing protocols. Examples are the Cluster Based Routing
Protocol (CBRP, [JiLT99]) and Virtual Structure Routing (VSR, see chapter 4).
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3. The AODV protocol

The Ad hoc On-Demand Distance Vector (AODV) Routing Protocol [PeBRD03] is
intended for the Internet Protocol (IP) to provide a routing protocol adapted to
mobile nodes in an ad hoc network. It is a reactive protocol that builds routes
between two nodes only if a communication between these two nodes is desired.

This chapter describes the functionality of AODV, starting from a description of
the basic principle and going more into detail when describing special treatment in
certain cases that should improve its performance.

3.1 Overview

For route discovery and management, AODV uses four basic control packets. The
RouteRequest-packet is broadcasted by an origin node if it doesn’t have a route
to a destination node to which it desires to send a data packet. This packet is
relayed in broadcast by all neighboring nodes receiving it and forwarded further
through the network until it reaches a node that knows the requested destination,
possibly the destination itself. This node then generates a RouteReply-packet as a
positive reply which is forwarded in unicast back on the reverse path that was created
while forwarding the RouteRequest. These two packets are used by the source, the
destination and all intermediate nodes on the route to create appropriate route table
entries. The RouteError -packet is sent if an intermediate node on the route cannot
relay a data packet for a specific node (see figure 3.1). Finally, the route reply
acknowledgment (RouteReplyAck) packet has to be sent by the originating node
when it receives a RouteReply with an appropriate flag set. This option is intended
to assure the creation of bidirectional links when there is a danger of unidirectional
links due to different radio ranges among the intermediate nodes.

The AODV protocol also supports multicast routing and group management ([RoPe00]).
Using the RouteRequest/RouteReply mechanism, a node detects multicast tree mem-
bers. With a special MulticastActivation packet unicasted to the nearest group
member, it finally joins the group.

Control packets of AODV are sent to port 654 using UDP. So an AODV control
packet is encapsulated by an UDP header and an IP header. Some information from
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Figure 3.1: This shows an example of a route discovery that is answered by the
requested destination itself and a link breakage detected by node N2

these headers, like the address of the previous hop or the time to live of a packet
(TTL), are also used by the AODV protocol.

3.2 Formats and structures

This section describes the packet formats of the main control packets. Furthermore,
the necessary information of AODV’s route table and some brief notes about its
maintenance are given. A detailed description of the use of each field will be given
later in sections 3.3 and 3.4.

3.2.1 Packet formats

Figure 3.2 shows the packet formats of the four main control packets. The Type field
identifies the packet type: RouteRequest, RouteReply, RouteError, RouteReplyAck
or Hello1. The Hop Count field represents the number of hops taken between the
originating and the destination node. The Destination IP Address always refers
to the IP address of the node for which a route is requested, whilst the Originator

IP Address stands for the emitter of a RouteRequest. The sequence numbers are
the associated control packet sequence numbers of the respective node.

The RREQ-ID is a sequence number for RouteRequests. It is incremented for each
RouteRequest emitted by the node, also for route request retries if a previous Route-
Request timed out. In contrast to that, the Originator Sequence Number is only
incremented once for each route discovery cycle.

Within the RouteRequest packet, the following flags may be set:

• J - group join flag (for multicast purposes)

• R - repair flag (for multicast purposes)

• G - demand gratuitous route reply (see section 3.3.2)

• D - destination only flag: only the destination may reply to this request, no
intermediate replies are wanted

• U - destination sequence number unknown: indicates that the originator doesn’t
know the destination’s sequence number and that the respective field in the
RouteRequest packet should be ignored

1see section 3.4.2
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Figure 3.2: Format of AODV’s control packets

A RouteReply packet may have the following flags:

• R - repair flag (for multicast purposes)

• A - acknowledgment required: the recipient (the next hop) has to send a
RouteReplyAck to the previous hop

Finally, the N flag (no delete flag) of a RouteError packet indicates that a unreachable
route should not be deleted because a local repair of a link has been performed.

The RouteReplyAck contains no further information, so it is impossible to determine
which RouteReply is acknowledged by that packet. However, there is no real need
to identify a particular packet since, with this mechanism, the node only verifies if
a link to a neighbor is bidirectional or not.

3.2.2 Route table format

An AODV route table entry contains at least the following information:
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destAddr the destination node’s IP address for which the entry is for
destSeqNo its last known sequence number
destSeqNoValid boolean, indicates if the destSeqNo is known and therefore valid
routeValid boolean, indicates if the nextHopAddr for that entry is valid
lifetime time when this entry expires; see note below
nextHopAddr if routeValid, this indicates the next hop to reach that node
hopCount number of hops to the destination node
precursors list of precursors that use us as an intermediate hop to the

destination node

The lifetime field has two purposes: If the route table entry is valid, it indicates
the time when the route to that node expires. When it expired, the routeValid

flag is set to false and the lifetime field is set to DELETE_PERIOD; so from this point,
it indicates the time when the entry has to be deleted from the route table. Thus,
after a route is invalid, it still remains for DELETE_PERIOD in the route table. This
is necessary since some information may be reused when re-requesting a route to
the same destination node: the last known hopCount is used as a starting radius for
the expanding ring search (see section 3.3.1) and the destSeqNo may be used in the
RouteRequest packet as additional information.

The list of precursors contains the addresses of nodes that have a route to destAddr

on which we are as an intermediate, forwarding node. This information is used in
case we have to generate or forward a RouteError packet (see section 3.3.3).

3.3 Control Flow

In this section, the whole process of AODV’s route construction is explained. The
last subsection shows, how AODV deals with broken routes.

3.3.1 Route discovery

If a source node wishes to send a data packet to a specific destination, it first looks
in its route table if it has a valid route to the destination IP address. If it finds
such an entry, it simply unicasts the data packet to the next hop indicated in the
route table entry (RTE). Additionally, it sets the life time of the RTE to current time
+ ACTIVE_ROUTE_TIMEOUT to prolong the life time of the entry because it has been
used again.

If such an entry does not exist, a RouteRequest-packet will be broadcasted. To pre-
vent flooding the whole network unnecessarily, an expanding ring search technique is
used. The first dissemination of a RouteRequest will have a TTL of TTL_START, so that
only the next TTL_START hops are affected by the broadcasted packet. If the origin
node does not receive a RouteReply within a certain timeout (RING_TRAVERSAL_TIME),
it increases the TTL of the RouteRequest-packet by TTL_INCREMENT, increments its
RREQ-ID and resends the RouteRequest. This is repeated until a RouteReply is
received or until the TTL reaches TTL_THRESHOLD. Note that the value of RING_TRA-
VERSAL_TIME takes the current TTL as a parameter. Thus, with an increasing ring,
the waiting time also increases.
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After this and if the origin node has not yet received a RouteReply, it sends a
RouteRequest with TTL set to NET_DIAMETER hops. This may be repeated up to
RREQ_RETRIES times, but each time the waiting time is increased using a binary ex-
ponential backoff. Hence, for every new RouteRequest, the waiting time is multiplied
by 2.

The value RREQ-ID within a RouteRequest-packet represents together with the emit-
ter’s node address a unique identifier of a particular RouteRequest. It is incremented
by the emitter for each new RouteRequest sent. This is necessary to identify dupli-
cates of a request while flooding the respective packet through the network.

3.3.2 Processing route requests

When a node receives a RouteRequest, it creates an active route table entry (RTE) for
the previous hop if necessary and updates the life time field of that RTE to current
time + ACTIVE_ROUTE_TIMEOUT. Then, the node verifies if it has already received
that particular RouteRequest (identified by its origin address and its RREQ-ID). In
this case, it just discards the RouteRequest.

If it is the first time, that the node receives the request, the hop count of the
RouteRequest is incremented by one. The node also updates its RTE for the origin
node (creating it if necessary) for the reverse route:

• The originator’s sequence number is copied from the RouteRequest packet to
the appropriate RTE if the new one is greater or if it was previously unknown.

• As next hop to the originator, the IP address of the node is set, from which
we received the RouteRequest. The address is obtained from the IP header of
the packet.

• The hop count is copied from the RouteRequest packet to the RTE for the
originating node.

• Finally, the lifetime of the RTE is set to max{told, tmin} whereas told is the
existing lifetime and

tmin = tcurrent+2 ·NET_TRAVERSAL_TIME−2 ·hopCount ·NODE_TRAVERSAL_TIME.

The term 2 · NET_TRAVERSAL_TIME approximates the worst round trip time
of a packet within the net. From this, the approximated fraction of time
that already has passed is subtracted. NODE_TRAVERSAL_TIME hereby is an
estimated delay between two neighboring nodes, including queuing delays, in-
terrupt processing and transfer times.

Now, there are two possibilities: If the node is the requested destination itself or if
it knows the destination and the origin node did not set the destination only flag
(D-flag) in the RouteRequest, the node generates a RouteReply. Otherwise, the node
forwards the RouteRequest. Thus, setting the D-flag in the RouteRequest packet
disallows replies by nodes other than the destination node itself.
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In the first case, the node generates a RouteReply packet and unicasts it to the pre-
vious hop. This packet is routed along the reverse path to the originating node that
was previously created when the RouteRequest was forwarded. If the node generat-
ing the RouteReply is not the destination node itself, it verifies if the gratuitous flag
(G-flag) is set in the RouteRequest packet. If it is set, the node will also unicast a
gratuitous RouteReply packet towards the destination node in order to ensure that
the destination node also has a path towards the originating node (see figure 3.3).
A gratuitous RouteReply packet looks like a normal RouteReply that would have
been created if the destination node had sent a RouteRequest for the originating
node. An originating node should set this flag if the communication is supposed to
be bidirectional.

Figure 3.3: This shows an example of a route discovery that is answered by the
intermediate node N2. If the gratuitous flag of the RouteRequest is set, it also
unicasts a gratuitous RouteReply to the destination in order to create a bidirectional
route.

In the second case, the node relays the RouteRequest packet by broadcasting it if
the TTL in the IP header is larger than 1. It modifies the hop count and TTL fields
appropriately and sets the destination sequence number field to the maximum of the
one received in the RouteRequest packet and the one maintained for the destination
by itself (if known).

When a node sends or forwards a RouteReply packet on a reverse route, it should
set the acknowledgment flag (A-flag) of the RouteReply packet when the link to the
current next hop is likely to be erroneous or if there is a danger of a unidirectional
link. A node receiving a RouteReply packet with such a flag set is supposed to return
a RouteReplyAck packet to its previous hop. If there is no such packet received, the
node assumes a link breakage and proceeds as described in the following section.

3.3.3 Route errors

Whenever a node receives a data packet for a destination for which it has no valid
RTE, a RouteError packet is generated. Also, when a node detects a link breakage2to
the next hop of an active route, a RouteError is sent if the precursor list of the
unreachable neighbor is non-empty.

The RouteError is broadcasted if there are more than one precursor for the unreach-
able destination, otherwise it is unicasted. On reception of a RouteError packet, the
node checks if it has a valid RTE for the unreachable node. If it has one, it invalidates
its entry but only if the next hop to that node is the node from which it received

2see section 3.4.1
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the RouteError. The node forwards the RouteError packet if the precursor list in
the RTE for the unreachable node is non-empty. Again, it is broadcasted if there are
more than one precursor and unicasted if there is only one. Thus, the RouteError
is promoted towards the source of an active route and discarded there.

The RouteError may contain more than one unreachable destination. In that case,
an intermediate node only forwards these destinations for which it has a non-empty
precursor list. Other unreachable destinations are discarded from the RouteError
packet.

3.4 Connectivity

An important property of mobile ad-hoc networks is the high dynamics of the con-
nections between nodes. Due to node mobility, current connections may get lost, but
also new ones are offered. This section describes the mechanisms that are foreseen
in AODV to verify node connectivity.

3.4.1 Maintaining local connectivity

A node has to be continuously aware of its connectivity to its neighbors to which
it maintains active routes. Otherwise, when the neighbor leaves the radio range,
data packets would be transmitted to nowhere and as long as the upper layer does
not implement some acknowledgment mechanisms itself, such packet losses would
remain undetected.

The RFC 3561 ([PeBRD03]) proposes to use link-layer notifications on one hand.
As described in section 2.1.2, the IEEE 802.11 standard uses acknowledgments for
unicasted packets as well as a ready-to-send/clear-to-send (RTS/CTS) mechanism to
reserve the media for data transmission. When promoting these information to the
AODV routing layer, each packet unicasted to the next hop will be acknowledged
without any additional traffic by the AODV layer on the radio. So there is no
need to use additional features. The major drawback of this method is, that it is
specific to the 802.11 protocol and not a common feature of standard MAC protocols.
Hence, it won’t interact with other MAC protocols and it implies the modification
of the 802.11 implementation on the end system to support the promotion of these
information.

If link-layer notifications cannot be used, the RFC proposes to use passive acknowl-
edgment. In that case, after a node has sent or forwarded a packet to the next hop,
it waits a certain timeout (NEXT_HOP_WAIT). If it receives any ‘sign of life’, i.e. any
packet from that node, it assumes the forwarded packet as acknowledged. There is
no packet-specific acknowledgment (same as with the RouteReplyAck packet), thus,
the node anyhow is not sure that a specific packet arrived at the next hop. But still
it is in communication range, so the connection is not lost.

To raise the probability of receiving any notification from the neighbor, the node
should listen to the medium, requiring it to be in promiscuous mode. A disadvantage
of the promiscuous mode is, that it consumes a bit more energy because all packets
have to be reassembled on the MAC layer in order to promote them to the higher
layer where they also have to be treated. This may be critical to low power nodes
like PDAs.
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If the node didn’t receive any passive acknowledgment within the last NEXT_HOP_WAIT
time, it is supposed to verify connectivity actively by using a ping mechanism. This
may be an ICMP echo request ([Post81]) or an unicasted RouteRequest to the neigh-
bor. If it does not receive any reply within RING_TRAVERSAL_TIME time, it assumes
a link breakage and proceeds as described in section 3.3.3.

3.4.2 Hello messages

To provide connectivity information, an option of the AODV protocol is to broadcast
Hello messages in case there were no other broadcasts within the last HELLO_INTERVAL.
A Hello message is a RouteReply packet with TTL set to 1 and the Destination IP

Address set to the node’s IP address; the Originator IP Address is irrelevant.
The lifetime of the packet is ALLOWED_HELLO_LOSS · HELLO_INTERVAL.

If a node receives a Hello message, it creates a route to that node if necessary
and sets its lifetime to at least ALLOWED_HELLO_LOSS · HELLO_INTERVAL. If a node
does not ‘hear’ anything from a neighbor for which it has an active route within
ALLOWED_HELLO_LOSS · HELLO_INTERVAL time, it assumes a link breakage and pro-
ceeds as described in section 3.3.3.



4. The VSR protocol

The Virtual Structure Routing (VSR) is a routing algorithm based on a self-or-
ganization mechanism dedicated to hybrid1 mobile ad-hoc networks. This chapter
describes the virtual topology that the routing algorithm relies on and the algorithm
itself. Detailed information about the basic functionality can be found in [ThVa04b]
and [ThVa05c]. [ThVa04a] and [ThVa05b] are extended works which describe more
functionalities.

4.1 Virtual topology

The topology upon which VSR builds up its routes consists of a virtual backbone and
clusters (see figure 4.1). The virtual backbone has its equivalent in wired backbones
like those of the cellular network GSM. The following subsections first describe the
basic ideas, then the actual virtual topology construction.

Figure 4.1: Example of a virtual topology used by VSR

4.1.1 Basic ideas

The basic ideas are the construction of a connected set of nodes on one hand, to
which the control traffic is concentrated (that is, the construction of a backbone),
and the construction of clusters on the other hand, building small, ‘handy’ and
hierarchical sub-topologies.

1see section 2.1.1
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4.1.1.1 Minimum connected dominating set

A kcds Connected Dominating Set (kcds-CDS) is a set of dominating nodes that are
connected directly and that are building a backbone upon which the control traffic of
the network is concentrated in order to reduce it. Non-dominating nodes are called
dominatees and have to be in the kcds-neighborhood of a dominating node d:

n ∈ Nkcds
(d)

whereby Nkcds
(d) is the neighborhood of node d that can be reached in kcds hops.

Thus, every node in the network can be reached via the backbone. A kmcds Minimum
Connected Dominating Set (kmcds-MCDS) is the set M containing the minimum
number of nodes of a given network that fulfills this condition. Figure 4.2 shows an
example of a 2-MCDS.

Figure 4.2: Example of a 2-MCDS

Due to the complexity of the construction of a MCDS (NP complete, [ClCJ90]), most
algorithms are trying to construct a good MCDS approximation. A construction of a
1-MCDS mostly can be divided into two steps: At first, some dominators are elected,
the nodes within their 1-neighborhood becoming their dominatees. This election is
similar to the election of a clusterhead (see section 4.1.1.2) and is based on a metric
which can be based on the node’s ID, the node’s degree, energy considerations etc.
The second step is to interconnect these dominators. In [CCCD02], the dominatee
with the highest number of non-connected neighboring dominators will also become
a dominator. If there are nodes with the same number of neighboring dominators,
the node with the highest ID wins.

However, these algorithms are not well suited for a kmcds-MCDS construction with
kmcds > 1 because they require a high delay that is getting worse with increasing
kmcds. They are, however, more interesting to reduce the number of dominators
which allows more nodes to save their energy and which simplifies the maintenance
of the CDS.

4.1.1.2 Clusters

A cluster in an ad-hoc network consists of a set of nodes that are geographically
close. In VSR, every cluster has one clusterhead. Clusters are used to divide the
network in service zones. The clusterhead of each cluster serves as a virtual access
point providing several services like cluster addressing, localization of nodes and
control flow management.

Per definition, to every node n being part of a kc-cluster applies that it has a maxi-
mum distance of kc hops to its clusterhead h:



4.1. Virtual topology 19

n ∈ Nkc(h)

whereby Nkc(h) is the neighborhood of node h that can be reached in kc hops. In
the example figure 4.3, every cluster is a 2-cluster.

Figure 4.3: Clusters

The aim of the clusterization algorithm is to minimize the number of clusters (thus
the number of clusterheads) on one hand, and, on the other hand, to build clusters
with a constant diameter. Furthermore, the clusterhead should be in the geograph-
ical center of its cluster. For a 1-cluster construction (that is all nodes are in direct
communication range to its clusterhead), there are several clusterization algorithms.
At the beginning, every node has to learn about its neighborhood and it has to
gather some information on it. The information needed depends on the used metric.
The simplest metric is based on the identifier, i.e. the address, of a node. The
node with the lowest identifier is chosen as the head of the cluster. Other more
complex metrics are based on the node’s degree (i.e. the number of direct neighbors
a node has), the physical distances between nodes, a node’s relative mobility, energy
considerations and so on.

4.1.2 Construction

In [ThVa04b], a combination of a kcds-MCDS approximation and kc-clusters is pro-
posed: The CDS builds the actual backbone upon which the control traffic is concen-
trated and thus reduced because the number of nodes on the backbone is reduced.
The clusters represent some sorts of service areas that provide localization and ad-
dressing. Also other services such as those of a Foreign Agent in the terms of Mobile
IP ([Perk02], [JoPA04]) are imaginable, since this topology may also be connected
to an access point providing access to a wired network.

4.1.2.1 The backbone

The backbone of this topology is constructed in several steps. At first, all nodes have
to learn about their kcds-neighborhood. This is done via several Hello messages that
contain a list with all known neighbors within a hop range of kcds. A node floods its
kcds-neighborhood with this message, setting its TTL to kcds− 1. A node then knows
all neighboring nodes that can be reached in kcds hops including the next hop node



20 4. The VSR protocol

towards it. Moreover, with these Hellos, a node is able to distinguish unidirectional
from bidirectional links.

The next step is to construct the backbone, that is, to create a connected subset of
nodes. In a hybrid network, the natural leader of the backbone is the access point
(AP). In pure ad-hoc networks, the leader is chosen in a distributed way. The role of
the backbone leader is solely to initiate the backbone construction, which actually
is the construction of a kcds-CDS, and to maintain it2. A node can be in one of the
following four states:

• isolated – This is the starting state of every node, indicating that it is not
yet member of the topology. In this state, it just waits for a signal that allows
it to join.

• active – In this state, a node is in the process for the election as a dominator.

• dominating – The node is a dominator, thus being part of the backbone.

• dominated – The node is a client of the backbone. Its distance from the
backbone is at maximum kcds hops, i.e. the nearest dominator is at most kcds

hops far.

Figure 4.4: Construction steps of the virtual topology’s backbone used by VSR. The
resulting graph (d) is a 1-CDS (kcds = 1).

The backbone leader is per definition the first dominator. It initiates the cascading
CDS construction in announcing itself as a dominator through sending a StateMes-
sage. The backbone’s construction then obeys the following rules (see figure 4.5):

2see section 4.1.3
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• An isolated or active node becomes a dominated node if it receives a mes-
sage from a dominator that is less than kcds hops away. It marks the previous
hop of that message as its parent node and broadcasts a StateMessage an-
nouncing itself as a dominatee.

• An isolated node that receives a message from a dominated node becomes
active for an election as a dominator and starts an election timeout.

• An active node whose election timeout has expired and which has the highest
weight3among all active nodes within its kcds-neighborhood becomes domi-

nating.

Figure 4.5: State diagram of a node during topology construction

So far, this constructs dominating and dominated nodes in waves around the leader,
propagating towards all nodes until every node is either dominating or dominated
(see figure 4.4, a-c). The third step is to connect these dominators. At the beginning,
only the leader is considered to be connected. A connected dominator sends a
JoinMessage message to invite other non-connected dominators to connect to it and
thus allows them to be part of the backbone. The TTL of such a packet is set to
2 · kcds + 1 and is relayed by all dominated nodes.

A non-connected dominator receiving a JoinMessage marks itself as connected and
sends a JoinReply back to the connected dominator on the reverse route. Every
dominatee receiving such a packet marks itself as a connected dominator and relays
the JoinReply message towards the node that previously emitted the JoinMessage.
The newly connected dominator then emits a JoinMessage itself to allow other non-
connected dominators to connect. This continues iteratively until all dominators are
connected, resulting in a kcds-CDS.

4.1.2.2 Clusterization

Starting from the existing backbone constructed in the previous section, the network
is clustered into kc-clusters. Only backbone members participate in the election of
a clusterhead, thus reducing overhead.

3see section 4.1.4



22 4. The VSR protocol

To create kc-clusters, dominators have to investigate their backbone neighbors that
are at maximum (kc− kcds) hops away. A temporary (kc− kcds)-CDS-neighbor table
for this is created that will be only used during the cluster construction phase. Ad-
ditionally, a list that contains all of these nodes, that do not have a clusterhead yet,
is maintained. After a timeout τ (message propagation time), the node from this list
with the highest weight is chosen as a new clusterhead. After this, all nodes that do
not have a clusterhead yet, continue the clusterization process iteratively. In contin-
uation of figure 4.4, figure 4.6 shows the resulting topology after the clusterization
process.

Figure 4.6: Clusterization. This graph shows two 2-clusters (kc = 2) upon the CDS
backbone (kcds = 1).

4.1.3 Maintenance

Because of node mobility, an important part of such a topology is its maintenance.
For the backbone, this means, that all dominatees have to have a dominator and
that all dominators have to stay connected.

To allow a fast reaction on topology dynamics, a node has to continuously collect
information about its neighbors using Hello packets. For the maintenance of the
CDS and the clusters, the kcds-neighborhood is relevant. To provide such continuous
information, periodic Hello messages are emitted by each node.

4.1.3.1 Backbone maintenance

To maintain the connectivity of the CDS, ApHello messages are periodically emitted
by the leader and relayed along the backbone. So the ApHello is propagated on a
tree, allowing a dominator to determine its parent/child relationship with other
dominators. If the leader is an access point (AP), these messages may contain
configuration parameters for Internet access. The absence of l successive ApHello
messages allows a node to determine whether it has lost its logical parent node
towards the backbone leader.

If a dominator d has lost its connection, it checks its neighbor table if there is
another dominator nearby which it can choose as an alternative parent node. Such
an alternative parent has to be one hop closer to the backbone leader than d was
before to avoid circles (the information is propagated within the ApHello). If there
is one, it simply chooses this node as his new parent. If there is none, it initiates a
repair process:

1. The disconnected dominator d broadcasts a ReconnectRequest with the se-
quence number of its last received ApHello; its dominatees relay the message
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via broadcast. Other dominatees receiving a ReconnectRequest message uni-
cast it to its dominator di (di 6= d).

2. A dominating node di replies to this message with a ReconnectReply if it has
received a ApHello newer than d. This message is sent via unicast on the
reverse route.

3. For every ReconnectReply that node d receives, it marks the next hop ni to-
wards the emitting dominator di as a possible secondary parent.

4. Finally, node d chooses the node with the highest weight as a new parent
among all secondary parents known. For the chosen node ni, it sends a Recon-
nectAdvert towards the emitter of the ReconnectReply di; this message forces
intermediate dominatees (and therefore also the chosen parent) to become
dominating in order to reconstitute the connectivity of the CDS (compare
with the JoinReply packet, section 4.1.2.1).

If this procedure fails m times, the disconnected dominator d floods its subtree with
a BreakMessage, forcing all child nodes (and itself) to leave the partitioned subtree
and to reinitialize their states to isolated. Then, as during construction, these nodes
are waiting for an external signal to begin the reconstruction. Connected dominators
having such isolated nodes within its kcds-neighborhood send a JoinMessage which
activates the construction process. As these isolated nodes are not necessarily within
the kcds-neighborhood of a dominator, a dominatee has to relay that information to
its dominator, thus invoking him to send a JoinMessage. An isolated node receiving
such a message marks itself as active and the construction phase has started.

To reduce the cardinality of the CDS, a dominator continuously verifies that it has
at least one dominatee at kcds hops. If it does not have one and if it is a leaf of
the backbone (i.e. not having any children on the backbone to which it relays the
ApHello), it is useless – its dominatees can be served by other dominators. Hence,
the node sends a UselessMessage and marks itself as a dominatee.

4.1.3.2 Cluster maintenance

The maintenance of the clusters is carried out completely by the backbone members
– dominatees do not participate. Within each Hello, every node indicates if it is
a clusterhead and the hop distance towards its clusterhead (not relevant if it is
a clusterhead). With this information, a node maintains its proper clusterhead,
remembering the next hop towards it.

If a node has lost its clusterhead, e.g., the next hop towards its clusterhead is gone,
it searches in its neighborhood table a dominator that announces a different cluster
that is less than kc hops away.

4.1.4 Metric

One aim of VSR’s virtual structure is stability. Thus, the main control flow should
be limited to only a few nodes building the backbone. To reduce expensive recon-
structions of such a structure, the nodes participating at the backbone have to be
chosen with care. Furthermore, clusterheads have an even greater importance among
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normal dominators as they should maintain a cluster as long as possible. To achieve
this, a metric to measure the weight of a node is used. The following criteria are
taken into account:

1. Persistence

This forces an important node to effect its role as long as possible. Once a
dominator is elected it will remain dominating. Thus, this criteria will not
enter into the formula below.

2. Relative mobility

This favors nodes with a stable neighborhood and since this is the most impor-
tant impact of mobility, only the neighborhood fluctuation is measured. For
this, the ratio between the number of neighborhood changes and the average
node degree during the last n time intervals is measured.

3. Energy

Since energy on small devices is a critical part and since nodes that are impor-
tant for the structure are likely to consume more energy because of structure
maintenance measures, low energy nodes should be penalized heavily in terms
of the metric. An exponential metric would be appropriate in this case.

4. Degree

On one hand, a node’s degree (i.e. the number of nodes within communication
range) shouldn’t be too small in order to reduce the number of dominators
and clusterheads. On the other hand, a large number of neighbors increases
collision and congestion probabilities. Hence, the metric for the degree assumes
an optimal number of neighboring nodes and decreases with increasing and
decreasing node numbers.

These parameters normalized, a node’s weight is the following:

pweight = α · pmobility + β · penergy + δ · pdegree

with 1 ≥ α � β � δ ≥ 0.

4.2 Virtual Structure Routing

As described in section 2.2, there are basically two major classes of routing proto-
cols for MANETs: reactive protocols and proactive protocols. Because the virtual
topology described in section 4.1 provides a network structure based on two levels,
the routing protocol proposed uses both approaches to its advantage: At the lowest
level (i.e. clusters) a proactive intra-cluster routing is considered whereas, at the
higher level, a reactive inter-cluster routing over the backbone is proposed. Thus,
VSR is a routing protocol completely based on the self-organized topology.
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4.2.1 Intra-cluster routing

Routing within a cluster is proactive, that is, every node always has a route to
every other node within its cluster. Thus, communications between geographically
near nodes have a relative low latency since a route between them is likely to exist.
Furthermore, since clusters are less dynamic than the nodes within a cluster, inter-
cluster routing over longer distances is much more stable. The induced overhead
due to the maintenance of these cluster internal routes can be controlled through
the parameter kc which represents a cluster’s radius.

Each member of a cluster periodically broadcasts a Hello message that also contains
its direct neighbors (its 1-neighbors). Thus, every node is capable to get to know
its 2-neighborhood and to determine whether a connection to its direct neighbor is
bidirectional. This Hello is forwarded by a neighbor only if the link between them
is bidirectional, if they have the same clusterhead and if the TTL of the message is
greater than 1. The initial TTL is 2 · kc + 1 (the diameter of the cluster). These
Hellos also contain values like CDS state information that are needed by the kcds-
neighborhood for the maintenance procedure of the virtual structure. Therefore, the
additional overhead is reduced.

With these Hello’s, a node has a global view of its cluster, including bidirectional
links between all members. Upon this, a node can apply any source routing algorithm
(for example Dijkstra) to find an optimal route to its desired destination node within
its cluster. Or it simply can set the node from which it received a relayed Hello as
the next hop towards the original sender of the node.

4.2.2 Inter-cluster routing

If a node has to send a packet to a destination which is not part of the same cluster
and to which it does not have a route yet, a route discovery has to be started.
Thereby, as a benefit of the backbone, the number of nodes that are involved in the
discovery process is minimized.

Whereas classical routing protocols considered routes as a series of node IDs (or
addresses), inter-cluster routing of VSR proposes routes based on a series of cluster
IDs. Because clusters are more stable than mobile nodes, routes in VSR appears to
be more robust.

4.2.2.1 Cluster topology discovery

As a prerequisite for cluster routing, each node of a cluster ci has to be aware of
the local cluster topology, i.e. adjacent clusters of cluster ci have to be determined.
Each node gi receiving Hellos from a node gj of a different cluster cj has a gateway
functionality from cluster ci to cluster cj. This property of a node is propagated
towards all members of its cluster with its Hello message. Consequently, the length
of a Hello may increase further. But this is still acceptable, since the number of
packets has a greater influence of the performance due to medium access than the
length of a packet.

4.2.2.2 Route discovery

For a destination node dk that is not within the same cluster and that is not within
the kcds-neighborhood of the sender si, a route of clusters is maintained. If si does
not have a route table entry for dk yet, it launches the route discovery:
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1. If the sender si (member of cluster ci) is a dominatee, it sends its RouteRequest
directly to its dominator using intra-cluster routing.

2. A dominator generating or receiving a RouteRequest and not having the re-
quested destination in its neighborhood table has to forward it on the backbone
(backbone flooding). Before it does so, it adds the ID of its cluster to the re-
quest if it is different from the last cluster ID marked in the request.

3. A dominator that has the requested node dk in its neighborhood table acts as
proxy and generates the RouteReply ; it also adds the cluster route towards si

to its route table. The RouteReply is sent back using the inter-cluster routing
(a route to si already exists because of the previous RouteRequest).

4.2.2.3 Routing

Finally, routing is possible after a successful route discovery and applies to RouteRe-
ply and data packets. The route to the actual destination of such a packet is marked
inside the packet in form of a cluster route, that is, a route that only contains the
IDs of the clusters to traverse. A node nj that receives a ‘routable’ packet processes
its route in reverse order, starting with the destination dk. It acts in accordance
with the following rules:

1. If nj has the destination in its neighborhood table, it sends the packet directly
towards it using intra-cluster routing.

For every cluster cm (starting with the cluster of dk, then using the cluster nearest
to dk, . . . ):

2. If nj has a 1-neighbor nm that is part of the cluster cm, the packet is forwarded
to this node (thus, nj is a gateway to cm).

3. If nj has a 1-neighbor nj′ that is a gateway to cm, the packet is forwarded to
nj′ .

4. If the cluster of nj has at least one gateway to cm, nj chooses the nearest
gateway nj′ and forwards the packet to it using intra-cluster routing.

If none of these rules can be applied, the next cluster is tried until it comes to a
known cluster where the algorithm finally stops.

Since all nodes of a cluster generally have the same complete view of their cluster’s
topology they will make coherent decisions and the packet will come closer towards
its destination by every hop. However, slight incoherencies may be encountered due
to topology changes and propagation delays of these changes. Thus, to avoid loops,
a packet will be discarded silently if it is received a second time. It is identified by
the couple (source address, sequence number).

Every node that is supposed to forward a packet tries to send it to the cluster
nearest to the destination. Thus, the route of a packet is dynamic and a node that
is modifying the route has to update the route marked inside the packet so that the
destination can benefit directly from the new route.
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4.2.2.4 Acknowledgment and route repair

To increase the delivery ratio, an acknowledgment mechanism is used when forward-
ing a data packet. Similar to the proposition in the RFC of AODV as described in
section 3.4.1, [ThVa05b] proposes the use of the 802.11 MAC layer acknowledgment
facility. Besides this, a forwarding node may listen to the medium in promiscu-
ous mode. If it ‘hears’ the next hop forwarding the particular packet, it takes this
as a passive acknowledgment. Solely the destination itself has to send an active
acknowledgment as it is not supposed to forward the packet.

If there is no acknowledgment after a timeout t, the packet is retransmitted. After
nretry retransmission attempts, a route repair is initiated. For the route repair, the
routing algorithm described in section 4.2.2.3 is re-executed. But this time, the
erroneous node is considered to be dead and thus not taken into account.
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5. Implementation

This chapter is dedicated to the implementation of the AODV protocol described in
chapter 3. We chose to implement it in the simulation environment from ‘scratch’
(that is, from the RFC) for several reasons: It did not exist in the simulator’s
version used, we wanted to have an implementation as compliant to the RFC as
possible and we wanted to be sure to use the same mobility and traffic generation
model implementations that were used by VSR. Furthermore, the types of statistics
collected should be similar.

5.1 OPNET Modeler
As simulation environment, OPNET Modeler Version 8.1.A was used. OPNET
Modeler is an event-driven network simulator tool that supports many kinds of
networks, from office LANs, WANs, Wireless LANs, telecommunication networks
up to satellite networks.

OPNET Modeler models a network with several layers. The highest layer is a global
network (world network) that may contain several sub-networks and their linkage.
A network may also contain nodes which are represented by node models. A node
model describes the interface of a node as well as its configuration parameters and
its behavior. An interface may be any kind and number of communication interfaces
(Ethernet wire, IEEE 802.11 radio etc.). It also describes the mobility of a node
(mobile or fixed). Furthermore, the supported protocol stack is defined within a
node model. Every protocol and its interfaces with higher and lower layer protocols
are described using process models. As example, figure 5.1 shows the AODV node
model implementation used for these simulations.

Process models are described using a state transition diagram of a finite state ma-
chine (FSM). There are unforced and forced states: An unforced state represents
a persistent change in the condition of a process, thus the process will remain in
that state until there is another event causing a state transition. A forced state will
return immediately after executing the code associated with it, thus no simulation
time will elapse in this state. Since AODV is a stateless protocol, it only has one un-
forced state – all others are forced (not counting initial wait states which are clearly
not part of the AODV protocol; see figure 5.2).



30 5. Implementation

Figure 5.1: Node model for the AODV implementation. The upper four gray boxes
are placeholders for process models, the arrows between them are communication
channels between the processes. The lower two boxes are the actual physical link
layer interfaces.

State transitions may be unconditional (the transition will always fire) or may only
be taken if a condition is fulfilled. The latter one may be any boolean expression
and often is a test for a specific interrupt type like an incoming packet or a timer
interrupt. Additionally, a function that is called whenever that transition is taken
may be defined.

The actual user source code (in C) only describes the detailed behavior of the process.
Pieces of code may be associated to the enter executive of a state, to the exit exec-
utive of a state and to each state transition. To facilitate reuse of code, functions
may be defined separately.

Thus, OPNET Modeler follows a real modeling approach with a simple and clear
graphical representation. This minimizes implementation errors especially for state-
ful protocols and avoids undesired cross-layer references due to a separate definition
of the interface of a node or a process.

5.2 Implementation particularities

OPNET Modeler provides powerful statistic collection and analyzation methods as
well as different traffic generation and mobility models. For the evaluation and
comparison of AODV and VSR, they were not used. Instead, statistic collection,
traffic generation and mobility models were implemented separately. This decision
was made to assure the desired traffic and mobility models and to avoid an even
slight distortion of the statistics due to OPNET particularities.

Furthermore, to observe the protocol’s true behavior without any overhead added
through the IP implementation of OPNET, AODV and VSR were implemented
directly on top of the 802.11 MAC layer (compare with figure 5.1). Some features
of the IP protocol like the time to live (TTL) field of the IP header used by AODV
were added directly to the AODV protocol.

As already mentioned, AODV is a stateless protocol, thus it was implemented using
only one unforced state (idle state) and several forced states that are rather event
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Figure 5.2: Process model for the AODV implementation. Red states are unforced
states, green states are forced states. The dotted transitions are conditional whereas
the solid ones are unconditional. The upper part of each state ‘contains’ the entry
executive and the lower part the exit executive. For forced states, the latter is
superfluous.

handlers than states (figure 5.2). The purpose of the initial unforced init state is
to wait for the initialization of the MAC protocol. The forced state init2 loads
the configuration parameters and schedules initial events for traffic generation. The
unforced end state is used to release resources at the end of the simulation. The
other states have the following purposes:

• generate_pk_flow

In this state, a node schedules all events for all packets that are supposed to
be sent as part of a flow (events PKT_FROM_HIGHER_LAYER). Furthermore, an
event for the node is scheduled, that is supposed to be the source of the next
data flow (event GENERATE_PKT_FLOW). This node is chosen randomly.

• higher_layer

Here, packets coming from the higher layer, i.e. transport or application layer,
are processed. If there is already a route to the destination node, the packet
is sent directly. Otherwise, a route discovery cycle is initiated.

• mac_layer

Packets that are passed from the MAC layer to the routing layer are handled
here. Depending on the packet’s type, the appropriate action is executed.
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• route_discovery

This state implements the route discovery cycle including expanding ring
search. For each step during the expanding ring search and for each discovery
retry, it schedules TIMEOUT_ROUTE_DISCOVERY until a route is found or until
the maximum number of retries has exceeded.

• mac_ack

If the option ‘node.Use WLAN-MAC Acks/NAcks’ is enabled, layer 2 notifica-
tions for packet acknowledgment are handled here.

• ack_timeout

When sending or relaying a data packet, the node waits a certain timeout for
a passive acknowledgment. If this timeout exceeded without an acknowledg-
ment, the node tests the connectivity to the next hop actively using a ping
mechanism; this is done here.

• send_hello

If the option ‘node.aodv.Hello Messages’ is enabled, a node periodically
broadcasts Hello messages. In this state, the node checks whether it has
broadcasted any messages during the last HELLO_INTERVAL time. If it hasn’t
broadcasted any message, it broadcasts a Hello.

5.3 Traffic generation

The traffic generation model is implemented directly within the process models of
the protocols. This speeds up simulation time slightly since there is no need to
package any interface control information (ICI) and to send it via a vertical cross
layer communication channel. The tradeoff of this method is, that it is part of the
protocol’s process model, thus not clearly separating protocol behavior and traffic
generation, even though the code of the traffic generation is limited to its specific
forced states (see figure 5.2).

The traffic simulated consists of one-way streams with a constant bit rate (CBR).
The source of the stream as well as the destination are chosen randomly with a
uniform distribution. The traffic generation model takes four simulation parameters:

• the size of a packet in bytes

• the time between two packets of a flow (packet interarrival time)

• the number of packets per flow

• the number of simultaneous flows at the same time

Thus, the duration of a flow is packet interarrival time × packets per flow.
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5.4 Mobility model

The process that controls the mobility of a node is defined within the node model as
a separate processor. The update of a node’s position is made in a discrete manner
every MVT_STEP seconds. Several mobility models were implemented:

• Random direction

A direction is chosen randomly with a uniform distribution. The node will
continue to move into that direction until it reaches the simulation area’s
boundaries, then it choses a new random direction.

• Boundless

On every movement step, the node choses a new direction. When it reaches
the simulation area’s boundaries, it reappears on the other side of the area.
The idea is to realise some sort of a spherical area, but, of course, it is not
really a sphere, since the radio waves don’t follow this behavior. In fact, if a
node reappears on the other side, it suddenly vanishes from it’s communication
context. Only if its neighboring nodes follow the same direction, this context
is preserved.

• City

The node choses a target coordinate and moves towards it on a grid. It first
moves in the x direction until it reaches the target’s x-value, then in the y direc-
tion. This should emulate the movement on streets within an urban structure.

• Random waypoint

The node first choses a target coordinate and then moves towards it. When it
has reached its destination, it chooses a new target.

From these models, the random waypoint model is the most realistic one and widely
accepted. Hence, it was the only one used when comparing AODV with VSR.

5.5 Simulation parameters

There are three different simulation series, all of them supposed to compare the
comportment of the protocols against scalar properties, and not against the time:

1. Number of nodes in the network

This series varies the number of participating nodes in the network. Addition-
ally, the simulation area’s size is adjusted to have the same node degree and to
avoid disconnectivity when only using few nodes. The associated configuration
file is op_models_aodv/_aodv_nodes.ef.

2. Mobility of the network

Here, node speed is varied. All nodes move with the same speed. This series
uses op_models_aodv/_aodv_mobility.ef as configuration file.
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3. Number of simultaneous connections

Finally, with this series, the impact of a traffic augmentation is tested. It takes
op_models_aodv/_aodv_connections.ef as configuration file.

This section describes the parameters that may be adjusted within these configura-
tion files, sorted by category.

Mobility parameters:

• ‘node.mobility.Movement step’ (refers to MVT_STEP)

Time interval after which the node positions have to be updated (in seconds).

• ‘node.mobility.Speed_Class’

Specifies which speed class to use. Possible values are NO_MOBILITY, LOW_MOBILITY
and HIGH_MOBILITY.

• ‘SP_LOW_MIN’ and ‘SP_LOW_MAX’

Defines the interval of the speed value for the low mobility class in meters/second.

• ‘SP_HIGH_MIN’ and ‘SP_HIGH_MAX’

Defines the interval of the speed value for the high mobility class in me-
ters/second.

• ‘SP_LOW_MOBILITY_MODEL’ and ‘SP_HIGH_MOBILITY_MODEL’

Specifies the mobility model to use for the respective speed class. Possible
values are:

0 – no mobility
1 – random waypoint model
2 – random direction model
3 – boundless model
4 – city model

See previous section 5.4 for a description of these models.

• ‘node.Trajectory: Create file’

During simulation, if enabled, produce a trace file of the trajectory used. The
format of this file conforms to OPNET’s format of a segment-based trajectory
file with a fixed time interval (MVT_STEP). This option must not be enabled if
‘Trajectory: Use file’ is set to enabled.

• ‘node.Trajectory: Use file’

If enabled, don’t use any mobility models, but use a trajectory file (for exam-
ple one, that was previously created with the ‘Trajectory: Create file’
option). This option must not be enabled if ‘Trajectory: Create file’ is
set to enabled.

Parameters for the traffic generation model (see also section 5.3):
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• ‘Data Flow: packet size’

Size of one data packet in bytes.

• ‘Data Flow: packet interarrival time’

Time between two packets of the same flow in seconds.

• ‘Data Flow: packets per flow’

Number of data packets to send for one flow.

• ‘Data Flow: number of flows’

Number of simultaneous data flows in the network.

Parameters for AODV:

• ‘node.Maintain local connectivity’

Apply actions to maintain local connectivity as described in section 3.4. If this
option is enabled, one of the following three options should be used.

• ‘node.Use WLAN Promiscuous Mode’

Listen to the medium in promiscuous mode to determine local connectivity.

• ‘node.Use WLAN-MAC Acks/NAcks’

Propagate WLAN-MAC acknowledgments to the AODV layer and use them
as acknowledgments for neighbors.

• ‘node.aodv.Hello Messages’

Send hello messages if there is an active route.
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6. Evaluation

In [ThVa05b], the VSR protocol was compared with another routing protocol for
MANETs, the Cluster Based Routing Protocol (CBRP, [JiLT99]). The CBRP also
uses clusters to face the high dynamics due to node mobility. But unlike VSR,
there is no backbone to collect the control traffic. Furthermore, CBRP allows to use
unidirectional links, which on one hand can exploit otherwise unused links, but on the
other hand disallows any acknowledgment and therefore retransmission mechanisms
which can have a great influence on reliability.

The goal of this study is to compare the performance of a flat routing protocol
(AODV) with a self-organized routing protocol (VSR). This time, both approaches
are completely different: VSR with a complete virtual structure that has to be main-
tained besides routing and data transfer, and AODV with a dynamic, on-demand
route discovery and no structure at all. Obviously, this results in some incompara-
ble properties: VSR, on one hand, shows a latency at the beginning, the topology
construction time. AODV, on the other hand, has a latency for each route request,
the route construction time. The evaluation shown here only considers the perfor-
mances during run time, that is, the topology construction time was not taken into
account (for a convergence evaluation of the virtual topology see [ThVa05a] and
[ThVa04b]). In contrast, the latency of AODV’s route construction was included
because it influences the overall delivery delay.

6.1 Configuration

This section describes the simulated environment and the protocol specific parame-
ters used within this environment.

6.1.1 General settings

The parameters of the simulated mobile ad-hoc network were the same for both
protocols:

1. Radio link
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The network was modeled with the IEEE 802.11b link layer and medium access
protocol. The physical radio range was 300m and also equal for all nodes.
Thus, all links were bidirectional.

2. Mobility

As movement model, the random waypoint model as described in section 5.4
was used. The constant speed of every node was 5m/s. When evaluating the
impact of mobility, the speed is varied but always the same for every node.

3. Node density

The node density always was kept equal. Generally, there are 40 nodes on
a squared area with a length of one edge of 2 100m. When evaluating the
scalability of the protocols, the number of nodes in the network is varied. But
at the same time, the size of the simulated area is adjusted to avoid network
partitioning.

4. Traffic

The traffic was simulated with 3 concurrent data flows. The source and the
destination nodes were chosen randomly for each flow. One flow consists of
8 data packets with a size of 128 bytes sent every 0.25 seconds. This gives a
bitrate of 4 kbit/s and a flow duration of 2 seconds. Thus, when talking about
network load here, we do not mean the data throughput but the number of
clients using the network for data transmission. When evaluating the influence
of the network load, the number of flows is increased.

5. Layer 2 notifications

For genericity and for the reasons mentioned in section 3.4.1, the acknowl-
edgment features of the 802.11 MAC layer are not used for both protocols,
although this likely would improve protocol performance. The promiscuous
mode was used neither – this allows a node to save energy since frames will
be dropped on a very low layer unless they are broadcast or destined for the
current node.

6.1.2 AODV configuration

The maintenance of local connectivity in AODV was enabled because otherwise,
a node is not able to determine whether the next hop of an active route is still
within radio range. As link layer notifications are not used and as there is no active
acknowledgment for data packets, passive acknowledgments are the only way to
monitor local connectivity. The probability to receive such passive acknowledgments
is additionally reduced since promiscuous mode was disabled.

For this reason, the optional Hello messages of AODV were enabled. This increases
the number of control packets that can be taken as a passive acknowledgment. Oth-
erwise, disabled Hellos would have led to a ping and a ping-reply (represented as
unicast 1-hop RouteRequests and appropriate RouteReplies) for every data packet.

RouteReplyAcks were not requested at any time. Since this mechanism is supposed
to detect unidirectional links, this was not necessary. All nodes have the same radio
range, thus bidirectional linkage is available.
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RouteReplies from intermediate nodes were permitted (destination only flag of
a RouteRequest was set to FALSE). But since AODV generally creates bidirectional
routes with only one discovery process, gratuitous RouteReplies were requested (see
section 3.3.1).

Since expanding ring search is an approved technique to reduced unnecessary net-
work wide flooding, it was enabled.

All other parameters are using the default values as proposed in the RFC ([PeBRD03]).

6.1.3 VSR configuration

The main configuration parameters of VSR are the maximum distance of a node to
the backbone (kcds) and the maximum cluster radius (kc). Increasing the values of
kcds and kc leads to more overhead, decreasing them leads to a higher node participa-
tion in the backbone resulting in a higher energy consumption. A good compromise
is considered to be kcds = 2 and kc = 3 ([ThVa04a], [ThVa05b]).

Even though VSR supports a hybrid structure, that is, nodes communicating in
ad-hoc mode with other nodes and/or access points, it may also run in pure ad-hoc
mode. Thus, for the comparison with AODV, no access points were used.

The three different Hellos are sent in the following intervals: ApHellos (generated by
the leader and propagated on a tree towards each node) and ClusterHellos (generated
by each clusterhead and propagated towards each cluster member) are sent every
2 seconds, general node Hellos (containing 2-neighborhood and state information)
every 4 seconds.

6.2 Criteria

Since the convergence of VSR’s virtual topology is not considered here (see [ThVa05a]
instead) and since AODV has no convergence delays at all, no evaluation against
simulation time was made. In fact, the comparison against scalar attributes is more
interesting because it is more generic and independent of elapsed simulation time.

The three most important scalar attributes are considered to be node mobility, the
number of nodes in the network and the traffic in the network. In all three cases, at
least delivery ratio and delivery delay were compared between the protocols.

6.2.1 Mobility

In this section, the influence of the node mobility is regarded. All parameters re-
mained as described in section 6.1, except for the node speed that is varied between
0m/s and 30m/s.

The obtained delivery ratios for VSR and AODV is shown in figure 6.1. Since the
routes of VSR are based on a list of clusters rather than on a list of nodes, the VSR
routes remain much more stable. The dynamic routing through the clusters can lead
to an adapted route for each data packet. In AODV, however, high mobility leads
to RouteErrors requiring an expensive reconstruction of the route. Moreover, the
data packet causing the RouteError is dropped.
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Figure 6.1: Delivery ratio of data packets versus node speed

The slump of AODV’s delivery ratio in a static network (no mobility) may have
been caused by the use of passive acknowledgments (i.e. no packet specific acknowl-
edgment). Even if single data packets are lost, a node may still ‘hear’ something
from the next hop. This may happen when there are many nodes in a small area
and frequent collisions occur. If the topology is changing over time, such situations
only have a temporary character. In a static network, a node may always rechoose
the same node with a bad link as a next hop. Using active acknowledgment with a
retransmission mechanism (like in VSR) can avoid this problem.

In figure 6.2(a), the delay between the emission of a data packet by the originator
and its reception by the respective destination is shown. The amount of network mo-
bility slightly influences the performance of VSR, while with AODV, delay remains
constant. AODV’s routes are always fresher and therefore more optimal because
they have a shorter lifetime. VSR routes adapt to topology changes slightly slower
which results in the effect that they are not always optimal, thus have a higher delay.

At a first glance, this might be an advantage for AODV, but at a second thought,
it can be explained by the fact that undelivered packets are not taken into account
(see delivery ratio above). If there is an error in relaying a packet towards the next
hop, AODV ignores it and drops the packet, whereas VSR attempts a retransmission
which costs time.

Additionally, the real end-to-end delay is the delay experienced by the user, that is,
the latency of the route construction time needed by AODV has to be considered.
Figure 6.2(b) shows, that the on-demand routing of AODV has a heavy impact on
the delay between packet generation and reception. VSR, on the other hand, benefits
from its already existing intra-cluster routes. However, the tested scenarios penalize
on-demand routing a bit since the simulated traffic consists of short unidirectional
streams. Bidirectional and longer streams could have been a slight advantage to
AODV since it always constructs bidirectional routes with one request. Further-
more, the short traffic flows used may also explain the strange behavior of AODV’s
end-to-end delay that decreases with increasing speed: If a route construction or
reconstruction fails due to high mobility, the remaining packets of that flow do not
influence the delay since they never reach their destination. The impact on the de-
livery ratio, however, remains moderate since there are only few packets per flow in
the tested scenarios.
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Figure 6.2: Delay of a data packet versus node speed

Concerning the average route length, both protocols are nearly equally good (see
figure 6.3). With increasing speed, VSR tends to slightly longer routes. This is
caused by the proactive intra-cluster routing that leads to the effect that the routes
are adapted a bit slower. But the dynamic cluster address based routing algorithm
faces this sufficiently. AODV, in this case, benefits of the short streams because the
routes have a short life time due to high mobility which fits good into AODV’s short
expiration time of unused routes.
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Figure 6.3: Average route length versus node speed

6.2.2 Network size

Network size here means the scalability regarding the number of nodes, that is,
measuring the influence of the number of nodes participating in the network on the
delivery ratio and delivery delay. With an increasing number of nodes, the simulated
area was increased to keep the average node density and the average node degree
(i.e. number of neighboring nodes) constant.

Figure 6.4 shows that in VSR an increasing number of nodes hardly has an influ-
ence on the delivery ratio. The cluster size and thus the local conditions remain
constant. With an increasing number of nodes the number of clusters increases.
Accordingly, the size of the backbone increases, but much more slowly. Thus, VSR
scales efficiently with the number of nodes.
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Figure 6.4: Delivery ratio of data packets versus number of nodes in the network
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Figure 6.5: Delay of a data packet versus number of nodes in the network

The delivery ratio of AODV, however, is affected by the increasing number of nodes
and the growing simulation area. Although, local conditions remain also the same,
the average route length is increased. But with every additional hop, there is a risk
of a linkbreakage to the next hop. Since there is no packet specific acknowledgment
and since AODV does not integrate any retransmissions, the probability of a packet
loss increases.

For the same reason as explained in section 6.2.1, the delay between emission and
reception of a data packet is slightly better for AODV, but negligible (figure 6.5(a)).
The average delay increases with a growing network, which is obvious, since the
average route length increases (i.e. the number of hops increases).

With a growing network, AODV needs more time for route construction (figure
6.5(b)). This can be explained with the expanding ring search mechanism used dur-
ing route discovery. Additionally, between each cycle of the expanding ring search,
the waiting time before the next cycle is started increases (see section 3.3.1). But
this latency does not increase endlessly: AODV only tests 4 rings (1 hop, 3, 5 and 7
hops) before it floods the entire network. VSR, however, always floods its complete
backbone for inter-cluster route discovery, thus, the cluster route construction time
increases much more slowly with an increasing number of nodes.
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6.2.3 Traffic

In this section, the scalability regarding network load is compared between the two
protocols. During the last two sections, the default traffic consisted of 3 unidirec-
tional data flows1. Now, different numbers of flows were simulated, from 1 flow to 7
simultaneous flows.
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Figure 6.6: Delivery ratio of data packets versus number of simultaneous connections

Considering the delivery ratio, both protocols were stable and the tested network
load hardly influenced the delivery. For AODV, the delivery was at about 94%.
This could be expected because of prior results with default values during mobility
evaluation (figure 6.1, speed of 5m/s) and during scalablitiy towards network size
evaluation (figure 6.4, 40 nodes).

When comparing the delay between emission and reception of a data packet (figure
6.7(a)), one can see that it still remains constant, thus, the tested traffic was still
moderate so that it did not result in too much collisions and congestions.

Looking at the delay that comprises the latency of the route construction (figure
6.7(b)), AODV benefits of higher traffic. If there is a higher load within the network,
there are more existing routes. Thus, if a node sends a RouteRequest, there is a higher
chance that an intermediate node already knows the requested destination and that
it replies to the originator to speed up route construction. It does, however, not
reach VSR’s delay that profits from its existing intra-cluster routes.

6.2.4 Control flow

Measuring the overhead is critical for protocols that have to construct and maintain
a topology, even if there is no traffic at all. Additionally, for on-demand routing
protocols there are a number of route requests each time a new data packet has to
be transmitted. Table 6.1 is a sample of VSR’s and AODV’s control flow. It was
measured in control packets per node per second and not in kbit/s since all control
packets are considered to be small in size and thus the number of medium accesses
is more important than the time during which the medium is occupied.

The first two rows show the overhead of both protocols with the very default simula-
tion parameters. In total, AODV produces about 56% less overhead than VSR which
is related to the absence of a topology that has to be maintained. In AODV, there

1see section 6.1.1, item 4
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Figure 6.7: Delay of a data packet versus versus number of simultaneous connections

# Flows Hellos Topology RREQ RREP RERR Acks Total
VSR 3 3.90 0.21 0.005 0.003 – 0.58 4.70
AODV 0.58 – 0.614 0.877 0.008 – 2.08
VSR 7 3.90 0.42 0.010 0.005 – 1.34 5.67
AODV 0.29 – 1.399 2.022 0.022 – 3.73

Table 6.1: Control flow in number of packets per node per second

are about 43% more RouteReplies than RouteRequests. This is due to the fact, that
intermediate nodes replying to a RouteRequest will send a gratuitous RouteReply to
the requested destination and, additionally, there may be several nodes replying to
that request.

The last two rows show the same measurements for the highest network load sim-
ulated (7 simultaneous data flows). For AODV, the number of RouteRequests and
RouteReplies almost grow linearly with the number of flows. The number of Hellos,
however, decreases. This is related to the fact that AODV’s Hellos are emitted only
conditionally, that is, only when there was no other broadcast made by the node.
With an increasing number of RouteRequests, however, there are more broadcasts,
thus, less Hellos are needed.
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Figure 6.8: Total control flow versus number of simultaneous connections

Figure 6.8 shows the overall overhead added by each protocol. The control flow
grows almost linearly for both protocols, but it increases slightly slower in VSR. In
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AODV, the increasing number of RouteRequests and RouteReplies are responsible for
that, in VSR, the acknowledgment packets cause the augmentation; but even with
the highest traffic tested, AODV does not reach the overhead that was produced by
VSR. Thus, AODV produces much less overhead, which was expected due to the
different nature of the protocols.
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7. Conclusion and future work

Computing nowadays is not only portable as the early notebooks but has become
truly mobile and can be found in handheld organizers like PDAs, SmartPhones and
even smaller devices. But building up an infrastructure to allow such devices to
connect to a network for synchronization and communication purposes is expensive
and not always possible. Therefore, direct wireless communication that can be set
up spontaneously and without the need of any interconnection equipment is an
highly interesting subject. Furthermore, since such devices become more and more
widespread, connecting several of them to a complete mobile ad-hoc network allows
one to reach more devices that are far beyond one’s radio range.

A crucial thing in such networks is routing since it often has to happen over mul-
tiple hops, each of them showing an own dynamic and differences in properties like
available power, memory and radio range. The number of proposed routing proto-
cols shows that there are many different approaches. The aim of this work was to
compare two different ones: a simple light-weight reactive protocol (AODV) that
already achieved acceptance and that was standardized by the Internet Engineering
Task Force (IETF) with a new hybrid complex approach based on a self-organization
and which finally combines both, proactive and reactive mechanisms (VSR).

The main differences between AODV and VSR lie in reliability, latency and produced
control flow. AODV does not implement any packet specific acknowledgments which
results in a lower delivery ratio since lost or destroyed packets are not retransmit-
ted by the routing layer. VSR, however, adds an overhead due to control flow for
topology maintenance but which increases only slowly with increasing traffic or an
increasing number of participating nodes. Thus, for a large network with a high
usage, VSR is better suited than AODV, since it has lower latency and higher reli-
ability. The fact, that VSR also integrates access points to allow access to a LAN
and therefore possibly to the Internet, makes it even more interesting for campus
networks and networks on exhibitions and trade fairs. Since such networks also have
the property that they are geographically fixed, VSR’s clusters may remain very
stable.

However, some optional features of AODV like local repair were not tested here.
Furthermore, the traffic simulated only tested the protocols’ behaviors regarding
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the number of clients using the network. The behaviors regarding data throughput
still have to be compared. Finally, routing protocols of different types have to be
compared in a real environment. While implementations of AODV already exist for
several platforms, VSR has still to be implemented into a real IP stack of an existing
operating system.
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